Problem 1 (15 points)

The series is a convergent geometric series so that

$$
\left|e^{c}\right|=e^{c}<1 \text { thus we must have } \mathrm{c}<0
$$

$$
\begin{aligned}
& \sum_{n=0}^{+\infty} e^{n c}=\frac{1}{1-e^{c}}=D \Rightarrow 1-e^{c}=\frac{1}{D} \Rightarrow 1-\frac{1}{D}=e^{c} \\
& c=\ln \left(1-\frac{1}{D}\right)<0 \text { as it should because } \mathrm{D}>1 .
\end{aligned}
$$

Problem 2

a) $\lim _{n \rightarrow \infty}\left\{\left(\sin \frac{1}{n^{3.5}}\right) /\left(\frac{1}{n^{3.5}}\right)\right\}=\lim _{n \rightarrow \infty} \frac{\frac{d}{d n}\left(\sin \frac{1}{n^{3.5}}\right)}{\frac{d}{d n}\left(\frac{1}{n^{3.5}}\right)}=\lim _{n \rightarrow \infty} \frac{\cos \frac{1}{n^{3.5}} \frac{d}{d n}\left(\frac{1}{n^{3.5}}\right)}{\frac{d}{d n}\left(\frac{1}{n^{3.5}}\right)} \quad 10$ points
$=\lim _{n \rightarrow \infty} \frac{\cos \frac{1}{n^{3.5}}\left(-3.5 n^{-4.5}\right)}{\left(-3.5 n^{-4.5}\right)}=\lim _{n \rightarrow \infty} \cos \frac{1}{n^{3.5}}=1>0$
b) $\sum_{n=1}^{+\infty} n^{3.5} \sin \frac{1}{n^{3.5}}$ is divergent because $\lim _{n \rightarrow \infty} a_{n}=1$ different than 0.5 points
c) $\sum_{n=1}^{+\infty} \frac{1}{n^{3.5}}$ is convergent $\mathrm{p}-\operatorname{series}(\mathrm{p}=3.5>1)$

Taking into account the result from a) where $\lim _{n \rightarrow \infty}\left\{\left(\sin \frac{1}{n^{3.5}}\right) /\left(\frac{1}{n^{3.5}}\right)\right\}=1>0$ then the Limit comparison tests ensures also that

$$
\sum_{n=1}^{+\infty} \sin \frac{1}{n^{3.5}} \text { is convergent }
$$

10 points

Problem 3

If $a_{n}=\frac{(5 x-4)^{n}}{n^{3}}$, then

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{(5 x-4)^{n+1}}{(n+1)^{3}} \cdot \frac{n^{3}}{(5 x-4)^{n}}\right|=\lim _{n \rightarrow \infty}|5 x-4|\left(\frac{n}{n+1}\right)^{3}=\lim _{n \rightarrow \infty}|5 x-4|\left(\frac{1}{1+1 / n}\right)^{3} \\
& =|5 x-4| \cdot 1=|5 x-4|
\end{aligned}
$$

By the Ratio Test, $\sum_{n=1}^{\infty} \frac{(5 x-4)^{n}}{n^{3}}$ converges when $|5 x-4|<1 \Leftrightarrow\left|x-\frac{4}{5}\right|<\frac{1}{5} \Leftrightarrow-\frac{1}{5}<x-\frac{4}{5}<\frac{1}{5} \Leftrightarrow$
$\frac{3}{5}<x<1$, so $R=\frac{1}{5}$. When $x=1$, the series $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ is a convergent p-series $(p=3>1)$. When $x=\frac{3}{5}$, the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3}}$ is absolutely convergent as a p -series with $\mathrm{p}=3$.

For both $\mathrm{x}=1$ and $\mathrm{x}=3 / 5$ the series is absolutely convergent as a p -series with $\mathrm{p}=3$.

In conclusion:
a) The series is absolutely convergent for $3 / 5 \leq x \leq 1 \quad 15$ points
b) It is divergent for $x>1$ and $x<3 / 5 \quad 5$ points

Problem-4 (30 points)
For the solution of the homogenous

- CASE III $c^{2}-4 m k<0$ (underdamping)

Here the roots are complex:

$$
\left.\begin{array}{l}
r_{1} \\
r_{2}
\end{array}\right\}=-\frac{c}{2 m} \pm \omega i \quad \text { 10- points }
$$

The solution of tue homogenus eguoxtion

$$
m \frac{d^{2} x}{d t^{2}}+c \frac{d x}{d t}+k x=0
$$

has the form (assuming $c^{2}-4 m k<0$)

$$
\begin{gathered}
x_{\text {bo mo }}(t)=c_{1} e^{-t / t_{0}} \cos \omega^{\prime} t+c_{2} e^{-t / t_{0}} \sin \omega^{\prime} t \\
t_{0}=-\frac{2 m}{c} \quad \text { and } \omega^{\prime}=\sqrt{\frac{k}{m}-\left(\frac{c}{2 m}\right)^{2}} \text { or } \\
w^{\prime}=\omega \sqrt{1-\left(\frac{c}{2 m \omega}\right)^{2}}
\end{gathered}
$$

since $\omega=\omega_{o}$ (and as a result $k-m \omega^{2}=0$) we obtain after substition into the equation of motion : $c \omega \mathrm{~B}=\mathrm{F}_{0}$ and $\mathrm{A}=0$

$$
\Rightarrow x_{p}(t)=\left(\frac{F_{0}}{c \omega}\right) \sin (\omega t)
$$

20 points

$$
\text { Full solution: }\left\{\begin{array}{l}
x(t)=\mathrm{e}^{-(c / 2 \mathrm{~m}) \mathrm{t}}\left[\mathrm{c}_{1} \cos (\tilde{\omega} t)+\mathrm{c}_{2} \sin (\tilde{\omega} t)\right]+\left(\frac{F_{o}}{c \omega}\right) \sin (\omega t) \\
\tilde{\omega}=\omega \sqrt{1-(c / 2 m \omega)^{2}}
\end{array}\right.
$$

