
Problem 1 (15 points) 
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The series is a convergent geometric series  so that  
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Problem 2  
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Problem 3  

In conclusion:  
 
a) The series is absolutely convergent for   3/5x1 
 
b) It is divergent for x>1 and x<3/5 

is absolutely convergent  as a p-series with p=3. 

For both x=1 and x=3/5 the series is absolutely convergent  as a p-series with p=3. 
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Problem-4 (30 points) 

For the solution of the homogenous  
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In general we have for the 
particular solution 
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Full  solution: 
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